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abstract

An ever-increasing amount of information is being analyzed with the help of hierarchical ontologies, such as the Gene Ontology (GO).  While lower levels in hierarchies like GO generally increase in specificity, information content of nodes across a single ontology level is not uniform- which may bias any analysis assuming a direct correspondence between ontology level and node specificity.  This can lead to incorrect conclusions and reduction in gene enrichment/analysis discovery potential due inefficient selection of terms for analysis.  Ontology partitions represent a new method by which to select a set of ontology nodes (e.g., GO terms) having similar specificity with the aid of information theoretic concepts. We applied this approach within the Gene Ontology and validated that our method provides sets of nodes that are closer in information content to the theoretical ideal, when compared to sets of nodes derived from the graphical structure of the ontology (p < 1x10-5).  
introduction 

The complexity of biological data has necessitated the creation of hierarchical ontologies.  Consequently, there is growing interest in the field of ontology research.  According to cBiO, there are over 40 Open Biomedical Ontologies (OBO) that have been or are under development (www.bioontology.org).  Such ontologies often have thousands of nodes that increase in number with subsequent updates.  As such, the actual ontologies lend themselves to analysis in order to be used more effectively 1.  
The Gene Ontology 2, 3 is one of the classic hierarchical ontologies used in genome research, comprising approximately twenty thousand terms.  It is a direct acyclic graph whose nodes represent terms dealing with molecular functions, cell components, or biological processes; edges connecting nodes delineate dependence relationships.  The Gene Ontology has been widely used in genome research applications ranging from, among others, predicting function from annotation patterns to predicting biological processes based on temporal gene expression 4-7.
A number of methods have been developed to analyze gene enrichment using GO, including FatiGO 8, GeneInfoViz 9, and DAVID 10.  These tools greatly contributed to the field in terms of integrating ontology-based information with genomic analysis and often use variants of the Fischer exact test to test whether differentially expressed genes can be best categorized in a given GO term.  To determine the level of specificity, they allow input of the hierarchical level (within the GO direct acyclic graph) at which analysis is done.  These methods typically use metrics such as shortest and/or longest paths, given n steps (where n is the level of specificity).  The implicit assumptions of these methods are that GO levels correlate with specificity and that terms within the same GO level are of similar information content.  Additionally, this approach also presents inherent imprecision, because it must conform to discrete GO term levels, rather than the actual degree of information (which is continuous, not discrete) contained in the GO terms themselves.  Figure 1 shows how levels under the “biological_process” branch (GO ID:8510) are defined here.
One common issue in hierarchical ontologies is deciding the level of specificity to use in the analysis.   In GO, gene expression analysis can be done at the level of “macromolecular metabolism,” a relatively general category, or “terpene metabolism,” a very specific category.  This issue of ambiguous term specificity and ontology design has been cited previously in the literature as having hindered genomic analysis methods and their performance 11, 12.  On the one hand, analysis using GO terms that are too general may overlook significantly represented biological markers because many genes in the background genome are also annotated by the general GO terms. In contrast, the use of GO terms that are too specific for the application at hand can result in the same problem, because too few (perhaps zero) genes in the data set are annotated by the GO terms used in the analysis.  

Information theory 13, 14 has shown that distributing objects (e.g. genes, proteins) evenly across a set of bins (e.g. GO terms) maximizes the information that can be gained about the system in a random observation.  Here, we have developed an information-based framework for dividing an ontology into sets of nodes that have a uniform level of information.  A set of such nodes, therefore, partitions the information in the GO ontology into terms having similar information content.  
In order to implement our information theory approach, we required a method of calculating the amount of information represented by a node in the Gene Ontology. Intuitively, a node that annotates a large number of genes provides little information about the gene. For example, the GO node “cellular process,” which annotates approximately 40% of human genes, reveals very little about the actual biological function of a gene. On the other hand, nodes observed rarely among genes provide greater amounts of information. Thus, the GO node “carbohydrate metabolism,” which annotates fewer than 2% of human genes, provides a much clearer, more precise description of gene function. Mathematically, the information content of a GO node correlates inversely with the frequency of its annotation. More explicitly, the information content (in bits) of a GO node Vn is the “surprisal,” or self-information 15 of the node (see “Methods” section for details).
Figure 2 provides the information content (in bits) of selected GO nodes in the context of the human genome (SwissProt/TrEMBL annotation). A larger number of bits indicates a higher level of information; annotation by the GO node conveys a higher amount of description and specificity. Since bit-wise information is defined by log base 2, an increase in one bit of information indicates a two-fold increase in descriptive specificity. 
In this work, an information theoretical framework is used to quantify how much information is in each ontology term, using GO as a demonstrative application.  Since an ontology can be represented by a graph, our goal is to select a subset of n ontology term nodes with similar information content.  As n increases, the specificity of elements in these sets should increase as well.  These nodes need to cover all potential genes (collectively exhaustive), yet not overlap (mutually exclusive).  In this work, we first we describe the method for finding GO sets of terms having similar specificity.  Then, we validate this approach by comparing our method to traditional approaches that assume GO term set uniformity based on the graphical structure of the ontology.  Finally, we apply this framework to cellular pathway analyses to enable visual gene enrichment.
Results
Quantifying GO Specificity
Using an information theoretic approach, Figure 1 illustrate the GO partition nodes, in the context of the GO DAG (directed acyclic graph), chosen for GO partitions consisting of 12 nodes. Here we have chosen to restrict selection of GO partition nodes to beneath the “biological_process” node (see Figure S1 for a 4 node partition example).  Figure 1 and Figure S1 indicate that although the information contents of the GO partition nodes in each figure are similar, they may come from very different “GO levels” of the GO DAG, as defined by the “longest-path” approach used by others 8-10. We thus decided to compare the standard deviation of information content for GO nodes chosen by the GO partition method and the GO level method.  In Figure 3, “biological_process” served as the root node.  Figure 3.a. shows the standard deviation of information content for nodes comprising GO levels 1-5 (which are used by DAVID) and for nodes comprising GO partitions of varying size. GO levels 1-5 consist of 11, 80, 383, 878, and 1340 nodes, respectively. Figure 3.b. shows the average information content for the two methods.
The optimal information content per node for a set of n nodes is defined using an inverse relation: a gene chosen at random would be expected to be annotated by one node from the set of n nodes. Thus, as n grows larger, each node in the set is expected to become more specific. Put another way, each node has probability 1/n of describing a randomly-chosen gene (see Methods).
The results for all levels are shown in Figure S2.  We found that the average information content for the GO partition approach was significantly closer to the optimal information curve as compared to the traditional GO level-based approach (p < 1x10-5, see methods section). In addition, the GO partition-based approach resulted in significantly lower variability (p < 0.01) in the information within each set compared to that of the GO level approach across a majority (9 out of 14) of the levels.
Figure 3 indicates that the information content of GO terms for a given GO level initially rises more steeply and is at all points higher than the information content of GO partition nodes. Since the information content of GO partition nodes is selected such that a gene will be expected to be annotated by one GO partition, the higher level of information of nodes at a given GO level compared to an equal number of GO partition nodes is significantly less than optimal. The higher amount of information suggests that GO level nodes are too specific and detailed for the number of nodes at a GO level, and thus GO enrichment may be overlooked because the specificity of the analyzed GO terms is not appropriate. By contrast, Figure 3 shows that the information content of GO partition nodes (red curve, with standard deviation error bars) matches well the optimal information content (blue curve). At larger numbers of GO partition nodes, the mean information content is slightly above the optimal information content; this phenomenon is likely a result of the GO partition node selection algorithm, which excludes ancestors and descendants of nodes already added. The general branching structure of the GO DAG means that ancestors are sparser than descendants. Therefore, descendants are more likely to be selected as GO partition nodes as the selection algorithm advances, resulting in an apparent preference for higher, rather than lower, information content.
Gene Enrichment Application
Finally, allowing the user to specify the number of GO nodes to select makes possible the visual partitioning of genes, as in an interaction or regulatory network. For instance, each GO partition node of a GO partition may be assigned a color, and genes are “colored” if they are annotated by a particular GO partition node. Whereas the use of GO levels quickly leads to an intractable number of GO nodes—in the hundreds or thousands, as shown in Figure 3.a. and Figure 3.b.—our method provides a way of selecting a manageable number of GO nodes, such as 10 or 20, which can be used to partition a graph, color a network, test for enrichment, or deduce the most representative and relevant GO terms at a particular level of information. In addition, the user is not able to select the number of GO nodes for visual partitioning with the use of GO levels, but is easily able to select the size of a GO partition for analytical purposes. Of course, the user can also choose to select hundreds of nodes by our information-based approach, which would offer the level of scope provided by current use of GO term levels combined with greater precision and consistency of information.

We conclude this section by giving some examples of the applications discussed above.  Figure 4 (contrast with Figure S4) illustrates two cases where GO partitions have been applied to a biologically significant group of genes.  In Figure 4.a., secretin-like class B G-protein coupled receptors were been analyzed by a GO partition comprising five nodes derived from “biological_process” as root. An edge between a GO node and a gene indicates that the gene is annotated by that GO node. Visual enrichment of “cell communication” is immediately apparent, which is confirmed to have a highly-significant p-value of 1.22x10-18. By contrast, this class of receptors is only very sparingly involved in “protein metabolism,” “establishment of localization,” “regulation of physiological process,” and “regulation of cellular process.” In Figure 4.b., the proteins involved in the proteasome pathway were similarly analyzed with a GO partition of six nodes derived from “biological_process” as root. Three of the proteins were not annotated by any of the six GO partition nodes, and thus were assigned to “other.” Again, visual enrichment is immediately observed in “cellular protein metabolism” as well as “biopolymer metabolism.” Indeed, the enrichment p-values for these GO terms are 6.41x10-4 and 0.043, respectively. By contrast, genes involved in the proteasome pathway appear under-represented for transport, signal transduction, and metabolism of nucleotides and related molecules. In addition, the GO term “regulation of metabolism” is not connected to any of the genes, indicating that genes of the proteasome pathway mainly serve as regulatory targets and in processing roles, rather than affecting metabolic regulation themselves. Therefore, the use of GO partitions here has been used to clarify the functional significance of various pathways and gene families in a visually striking manner. 

Moreover, a GO partition may be used to “color” a graph or network of genes by assigning each GO partition node a color. Such a graph may be based on gene regulation relationships, protein-protein interactions, or concurrency of metabolic pathways. Figure 5 illustrates the use of a seven-node GO partition to color genes involved in the bone morphogenetic pathway.  An edge between two genes indicates an interaction between their protein products.  The graph reveals that most of the genes with direct interactions are “colored” similarly, whereas genes not sharing an edge are less similar.  
Discussion
An Information Theoretic Paradigm
We proposed that our method represents a more balanced and consistent approach of focusing on a certain level of specificity of GO annotation than the current and conventional method of relying on GO level. This idea was confirmed by comparing the standard deviation of information content (in bits) of GO nodes at a specific GO level with the standard deviation in information content of an equal number of GO nodes chosen by the information theory-based GO partition algorithm (Figure 3). As expected, GO partition nodes offer more consistent levels of information across GO nodes than GO level nodes due to the lower standard deviation in bits of information across GO nodes.  
Figure 3.b. demonstrates that, for GO partitions consisting of 1 to 100 nodes, the information content of GO partition nodes closely matches the optimal information content. In addition, whereas the use of “GO levels” locks the user into discrete levels that contain fixed numbers of GO nodes, our method is much more flexible in allowing the user to specify the number of GO nodes to select, which in turn allows precise selection of the desired level of information of the selected GO nodes. Thus, the user is not forced to conform to pre-determined GO levels, but instead is free to choose from the continuous range of information content represented by nodes in the Gene Ontology. In these ways, our method solves both the inconsistency and imprecision that result from relying on GO levels.  

Using the information theoretic-based approach, significant patterns (e.g. gene enrichment) can be exposed that would be missed using the traditional GO level-based approach- as shown in the gene enrichment examples.  Optimization based on GO term information reduces the need for multiple test corrections (which increases the p-value, resulting in potentially missed discoveries).  The effect of this is that the partition approach empowers investigators to make significant biological discoveries with fewer tests and smaller datasets.  
Gene Enrichment Applications
The applications of the GO partition method displayed in the results section (Figure 4 and Figure 5) show GO term partitions to be an information-theory based approach that combines consistency and precision to allow greater insight into biological systems. While the coloring of protein networks by GO annotation is not new, the choice of GO annotation with which to color may be improved. We have here introduced one such improvement over testing all GO terms for enrichment and over relying on conventional “GO levels.” The use of GO partitions enables visually striking graph coloring that has the added benefits of highly consistent information content of GO nodes used to color a graph or identify functional enrichment, as well as allowing the researcher full freedom to choose the number of GO nodes for partitioning or analysis.  Without such consistency, an investigator may conclude that a graph with an over-representation of a particular color (for a GO term) symbolizes a significant finding.  For instance, Figure S3.a., S4.b., and S5 associate nodes with their GO level-based annotation.  Here, very common processes (e.g., physiological process, cellular process) are commonly shared by the proteins offering little new information (since it would not be surprising if they were associated with many of the proteins).  In addition, due to lack of information consistency, the GO level also includes very specific terms (e.g., pigmentation, viral life cycle) that are inappropriate alongside the very common processes, and also offer little new information (as they would be expected to be unrelated to most proteins). In contrast, GO term partitions offer a much more “information consistent” way of analyzing functional data (see Figure 4.a., Figure 4.b., and Figure 5).  Here, we see more information on significant findings (e.g. biopolymer metabolism, cellular protein metabolism) compared to the GO level-based figures.  

Dynamic Nature of Ontology Information
In biomedical research, ontologies often cannot be designed perfectly from the outset because not all of the terms or their annotation frequencies are known during the initial ontology design stage.  Thus, encoding specificity in graphical hierarchical levels is difficult and prone to change as new terms and annotated genes are added.  Our approach provides a way of capturing the actual specificity of an ontological term at any point given the current graphical structure and gene annotation.  As a result, our method is designed to be robust in the face of structural changes to the ontology as well as annotation additions and revisions.   Another way to deal with these changes would be to force consistency across term specificity and their hierarchical levels within the graph structure, which could be achieved by extending this paper’s framework to allow for the re-engineering of ontology graphical structures based on such constraints.
Ontology Integration
One of the new frontiers in ontologies involves incorporation of different ontologies into genomic analysis, thus adding additional complexity 16.  While the original ontologies were not defined with such integration in mind, probabilistic-based approaches such as the one described here can be extended to these domains as well.  One can also use the information approaches described here to compare and combine ontologies into larger, meta-ontologies.  For example, ontologies and databases such as GO 17, MIPS18, YPD 19, and EcoCyc 20 contain overlapping information.  The information approaches provide quantitative metrics that can be used to analyze how ontologies are different and where they overlap.  This approach can be used to help determine the specificity of terms across these entities in order to create a hierarchical meta-ontology with increasing specificity that combines all terms.  
Methods
Algorithm Outline and Principles
Having thus defined the method of computing information content of GO nodes (see Introduction), we sought to determine the selection process for the GO nodes themselves, given a certain number of GO nodes to select. Such a set of GO nodes could be used to partition a set of proteins by function (as in a graph of interactions) or by which to evaluate GO enrichment at a desired level of information. Since these GO nodes “partition” a set of proteins, collectively they comprise a “GO partition,” and each node making up a “GO partition” is a “GO partition node.”
Optimal information content is defined intuitively via an inverse relationship: the fewer terms in a set, the more general they will be; the more terms in a set, the more specific they will be. Assuming a priori no enrichment in any GO partition node, the probability of observing any particular GO partition node in a given gene’s list of GO annotation is identical to and independent of the probability of observing any other GO partition node. On average, we expect a gene to be annotated by one GO partition node, since as the number of GO partition nodes comprising a GO partition increases, the information content of GO partition nodes also increases, and thus the probability of a gene being annotated by any particular GO partition node decreases as the number of GO partition nodes increases. We have verified that the average number of GO partition nodes present in a given gene’s GO annotation best matches the expected number of GO partition nodes when the expected number of GO partition nodes is one, even for GO partitions consisting of large numbers of GO partition nodes (e.g., 1500). This observation is consistent with the use of the terminology “partition,” which conveys a sense of disjointedness. If j is the number of GO partition nodes to choose from the GO directed acyclic graph (DAG), then the expected probability p(Vn) of observing any particular GO partition node Vn for a given gene is simply 1/j. Thus, the optimal information content per node in the partition spanning j nodes is the Shannon information content 21 of a probabilistic outcome with likelihood 1/j.
The algorithm developed to select the j GO partition nodes is described in detail in the “Methods” section and in the corresponding figure (Figure S5).

Quantifying Ontology Terms
We represent the Gene Ontology (or any other ontology) as a graph G where G:=(V, E) with vertices V defining the set of ontology terms and edges E representing dependence relationships between them.  The goal is to partition the graph to select a subset Vs of all GO terms Vs={V1…Vn} which have similar information content.  We can define the information content (in bits) of a GO term Vn in terms of the “surprisal,” or self-information 15 of the node, denoted by I(Vn), which is related to the definition of Shannon information 21:
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Here, p(Vn) is the probability of observing a gene, randomly chosen from the entire genome, that is annotated by node Vn. Put another way, p(Vn) denotes the frequency of annotation of node Vn. Therefore, if k(Vn) refers to the set of genes annotated by node Vn, and j denotes the total number of nodes in the Gene Ontology, then p(Vn) in the above equation is given simply by
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GO nodes not annotating any gene in the human genome were assigned the maximum information content of approximately 15.3 bits, equivalent to annotating half a gene, in order to avoid singularities caused by log of 0. It is assumed in such cases that, were more experimental data available, such GO nodes might actually annotate at least 1 gene in the human genome.
Information Statistics
The mean and standard deviation of information content for an ontology partition comprising k nodes were calculated as follows:
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Selecting Ontology Partition Nodes
The algorithm for selecting the j GO partition nodes is depicted in Figure S5. First, the GO node with actual information content closest to the optimal information content (assuming j nodes to select) is chosen. The optimal information content is the self-information (surprisal) of a GO node assuming it has exactly 1/j annotation frequency in the genome at large (see prior equation for self-information). Next, all ancestors and descendants of the GO node just added are “marked” so as not to be added later. The GO node with actual information content that is next closest to the optimal information content is then examined. If the GO node is ”marked,” then the assumption of independence of annotation by a GO partition node is violated; thus, it is discarded, and the GO node with information content that is next closest to optimal is examined. Otherwise, the GO node is kept, and its ancestors and descendants are marked. This process is continued until all j nodes have been chosen as the j GO partition nodes, which collectively make up a GO partition of j nodes.
Statistical Tests

We used the unbalanced, two-way ANOVA 22 to test for a significant difference between the means of the GO graph-based versus GO partition approach relative to optimal mean information level.  The variance ratio test (F-test) was used to test for significant differences in variance between the graphical (GO level-based) and GO partition approaches 22.  
Partitioning Applications
In the applications, entire gene sets (consisting of metabolic and signaling pathways from the GSEA functional database 23) were used.  These included: Secretin-like Class B G-protein coupled receptors, the proteasome pathway, and the bone morphogenetic pathway.  
Availability

To enable researchers to select an arbitrary number of Gene Ontology terms with similar degrees of specificity, we created a database describing the nodes and information properties for GO partitions comprising varying numbers of nodes.  The database allows for complex queries that span several fields, such as searching for terms containing between 1 and 2 bits of information that involve GO terms related to RNA.  Databases were developed for the entire Gene Ontology and for each of the three main branches: cell component, molecular function, and biological process.  They are available at: 

http://www.chip.org/~protcoop/proteomics/proj/gopart

Figure Legends

Figure 1. Subset of Gene Ontology hierarchy levels in graphical structure. Under biological processes node (GO ID: 8150).  GO partition with 12 nodes of equal information content are selected.  The following are the GO terms and corresponding GO identifiers selected: transcription (6350), cell surface receptor linked signal transduction (7166), protein modification (6464), development (7275), organismal physiological process (50874), response to biotic stimulus (9607),intracellular signaling cascade (7242), biosynthesis (9058), phosphate metabolism (6796), ion transport (6811), regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolism (19219), and response to stress (6950).

Figure 2. Spectrum of GO terms: examples ranging from 1 to 14 bits

Figure 3.a) Graphical structure-based information variation compared to that of GO term partition method.  b) GO term partition-based information per node compared to graphical structure-based analysis (GO level nodes) and optimal information for 5 GO levels.
Figure 4.  a) Secretin-like class B G-protein coupled receptors with 5 partitions. Cell communication: enriched. Establishment of localization, protein metabolism, regulation of physiological process, regulation of cellular process under-enriched.  b) Proteasome pathway with 6 partitions. Cellular protein metabolism, biopolymer metabolism enriched; transport, nucleobase, nucleoside, nucleotide, and nucleic acid metabolism, signal transduction, and regulation of metabolism under-enriched.

Figure 5. Bone morphogenetic pathway, 7 partitions
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Figure 5


[image: image11.emf]Q13485

Q15797

O43541

Regulation of cellular metabolism

Nucleobase, nucleoside, nucleotide 

and nucleic acid metabolism

Biopolymer metabolism

Cellular protein metabolism

Signal transduction

O00238

P36894

Q13873

Transport

Response to stimulus


References
1.
Blake, J. Bio-ontologies-fast and furious. Nat Biotechnol 22, 773-774 (2004).

2.
Camon, E. et al. The Gene Ontology Annotation (GOA) project: implementation of GO in SWISS-PROT, TrEMBL, and InterPro. Genome Res 13, 662-672 (2003).

3.
Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25, 25-29 (2000).

4.
King, O.D., Foulger, R.E., Dwight, S.S., White, J.V. & Roth, F.P. Predicting gene function from patterns of annotation. Genome Res 13, 896-904 (2003).

5.
Lagreid, A., Hvidsten, T.R., Midelfart, H., Komorowski, J. & Sandvik, A.K. Predicting gene ontology biological process from temporal gene expression patterns. Genome Res 13, 965-979 (2003).

6.
Rebholz-Schuhmann, D. et al. Protein annotation by EBIMed. Nat Biotechnol 24, 902-903 (2006).

7.
Masseroli, M. & Pinciroli, F. Using Gene Ontology and genomic controlled vocabularies to analyze high-throughput gene lists: three tool comparison. Comput Biol Med 36, 731-747 (2006).

8.
Al-Shahrour, F., Diaz-Uriarte, R. & Dopazo, J. FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes. Bioinformatics 20, 578-580 (2004).

9.
Zhou, M. & Cui, Y. GeneInfoViz: constructing and visualizing gene relation networks. In Silico Biol 4, 323-333 (2004).

10.
Dennis, G., Jr. et al. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol 4, P3 (2003).

11.
Raychaudhuri, S., Chang, J.T., Sutphin, P.D. & Altman, R.B. Associating genes with gene ontology codes using a maximum entropy analysis of biomedical literature. Genome Res 12, 203-214 (2002).

12.
Soldatova, L.N. & King, R.D. Are the current ontologies in biology good ontologies? Nat Biotechnol 23, 1095-1098 (2005).

13.
Cover, T.M. & Thomas, J.A. Elements of information theory. (Wiley, New York; 1991).

14.
MacKay, D.J.C. Information theory, inference, and learning algorithms. (Cambridge University Press, Cambridge, U.K. ; New York; 2003).

15.
Tribus, M. Thermodynamics and Thermostatics: An Introduction to Energy, Information and States of Matter, with Engineering Applications. (D. Van Nostrand Company Inc., New York; 1961).

16.
Hill, D.P., Blake, J.A., Richardson, J.E. & Ringwald, M. Extension and integration of the gene ontology (GO): combining GO vocabularies with external vocabularies. Genome Res 12, 1982-1991 (2002).

17.
Harris, M.A. et al. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 32, D258-261 (2004).

18.
Mewes, H.W. et al. MIPS: analysis and annotation of proteins from whole genomes. Nucleic Acids Res 32, D41-44 (2004).

19.
Costanzo, M.C. et al. YPD, PombePD and WormPD: model organism volumes of the BioKnowledge library, an integrated resource for protein information. Nucleic Acids Res 29, 75-79 (2001).

20.
Keseler, I.M. et al. EcoCyc: a comprehensive database resource for Escherichia coli. Nucleic Acids Res 33, D334-337 (2005).

21.
Shannon, C.E. A mathematical theory of communication. Bell System Technical Journal 27, 623-656 (1948).

22.
Montgomery, D.C., Runger, G.C. & Hubele, N.F. Engineering statistics, Edn. 3rd. (Wiley, New York; 2004).

23.
Subramanian, A. et al. Gene set enrichment analysis. Proc Natl Acad Sci U S A 102, 15545-15550 (2005).


























































































22
1

_1208686229.unknown

_1209828515.unknown

_1217009629.ppt






Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7








. . . 


. . . 


. . . 


. . . 


. . . 


. . . 


. . . 


. . . 


. . . 


. . . 








6350



7166



6464



7275



50874 9607



7242



9058



6796 6811 19219



6950



6139 6793 6810



7154



7165



7582



8150



8152



9987



19222



19538 31323



43170



43283



43412



44237 44238



44260



44267



50789



50791 50794 50875



50896



51179



51234 51244



1742



2028 6141 6351



6952



6984 7231



9611



16311



16925



44246 44274








6350


7166


6464


7275


50874 9607


7242


9058


6796 6811 19219


6950


6139 6793 6810


7154


7165


7582


8150


8152


9987


19222


19538 31323


43170


43283


43412


44237 44238


44260


44267


50789


50791 50794 50875


50896


51179


51234 51244


1742


2028 6141 6351


6952


6984 7231


9611


16311


16925


44246 44274


. . .


. . .


. . . . . . . . .


. . . . . .


. . . . . .


. . .





_1208686241.unknown

_1208686170.unknown

_1106849649.vsd
￼


￼


￼


￼


￼


￼


￼


￼


￼


￼



