Working with ENCODE Data

Emily Pritchard Ensembl

> Bob Kuhn UCSC

This course

Today

Overview of the GENCODE reference geneset (EP) **Overview of the ENCODE** project and data part 1 (BK) Tea/coffee Overview of the ENCODE project and data part 2 (BK) Accessing ENCODE data with UCSC part 1 (BK)

Tomorrow

Accessing ENCODE data with UCSC part 2 (BK) Accessing ENCODE data with Ensembl part 1 (EP) **Tea/coffee** Accessing ENCODE data with Ensembl part 2 (EP) General Q&A session (EP, BK)

Course materials

http://www.gencodegenes.org/workshops.html

- Slides
- Workbook
- Appendices

ENCOD

GENCODE Workshop Resources

Workshops are available to learn about the ENCODE Project (ENCyclopedia of DNA Elements).

The workshops are taught by experienced instructors from Ensembl, UCSC and the Wellcome Trust Sanger Institute, to give a "hands-on" tutorial on how to access the ENCODE data in genome browsers. Instructors involved in producing the GENCODE annotation dataset would also be on hand to explain how this is derived and how to interpret SNP consequences in the context of gene annotation. We will examine aspects of the ENCODE project and data types, and explore ways for you to access and learn about the ENCODE data available under the UCSC and Ensembl Genome Browser.

Material from our previous workshops is available here:

If you are interested in hosting a workshop, please contact us here.

The GENCODE gene set

Dr Emily Pritchard

This talk

- GENCODE: what and why?
- Genome assemblies
- Gene annotation in GENCODE
 - Automatic annotation
 - Manual annotation
 - The merge
 - CCDS
- Where to find GENCODE data

What is **GENCODE**?

Project Phase 2 GENCODE Goals Data Data Statistics - Human Statistics - Mouse Participants Publications IncRNA microarray RGASP 1/2 RGASP 3 Blog GENCODE workshops Contact us

The GENCODE Project:

Encyclopædia of genes and gene variants

Current GENCODE version

The current version in Human is Gencode 19, released on the 10/12/2013. For more information about the human releases please see the README.txt β file.

The current version in **Mouse** is **Gencode M2**, released on the 10/12/2013. For more information about the mouse releases please see the **README.txt** β file.

** NEW ** Two publications now out on our RNASeq genome annotation assessment project (RGASP):

· Assessment of transcript reconstruction methods for RNA-seq.

Steijger T, Abril JF, Engström PG, Kokocinski F, RGASP Consortium, Abril JF, Akerman M, Alioto T, Ambrosini G, Antonarakis SE, Behr J, Bertone P, Bohnert R, Bucher P, Cloonan N, Derrien T, Djebali S, Du J, Dudoit S, Engström PG, Gerstein M, Gingeras TR, Gonzalez D, Grimmond SM, Guigó R, Habegger L, Harrow J, Hubbard TJ, Iseli C, Jean G, Kahles A, Kokocinski F, Lagarde J, Leng J, Lefebvre G, Lewis S, Mortazavi A, Niermann P, Rätsch G, Reymond A, Ribeca P, Richard H, Rougemont J, Rozowsky J, Sammeth M, Sboner A, Schulz MH, Searle SM, Solorzano ND, Solovyev V, Stanke M, Steijger T, Stevenson BJ, Stockinger H, Valsesia A, Weese D, White S, Wold BJ, Wu J, Wu TD, Zeller G, Zerbino D, Zhang MQ, Hubbard TJ, Guigó R, Harrow J and Bertone P *Nature methods* 2013;10;12;1177-84 PUBMED: 24185837 ^G; PMC: 3851240 ^G; DOI: 10.1038/nmeth.2714 ^G

· Systematic evaluation of spliced alignment programs for RNA-seq data.

Engström PG, Steijger T, Sipos B, Grant GR, Kahles A, RGASP Consortium, Alioto T, Behr J, Bertone P, Bohnert R, Campagna D, Davis CA, Dobin A, Engström PG, Gingeras TR, Goldman N, Grant GR, Guigó R, Harrow J, Hubbard TJ, Jean G, Kahles A, Kosarev P, Li S, Liu J, Mason CE, Molodtsov V, Ning Z, Ponstingl H, Prins JF, Rätsch G, Ribeca P, Seledtsov I, Sipos B, Solovyev V, Steijger T, Valle G, Vitulo N, Wang K, Wu TD, Zeller G, Rätsch G, Goldman N, Hubbard TJ, Harrow J, Guigó R and Bertone P *Nature methods* 2013;**10**;12;1185-91

PUBMED: 24185836 &; DOI: 10.1038/nmeth.2722 &

Who is involved?

- Ensembl (EBI/WTSI) automatic gene annotation
- Havana (WTSI) manual gene annotation
- Yale pseudogene annotation
- CNIO protein validation
- MIT comparative genomics based validation
- Lausanne experimental validation
- CRG experimental validation
- UCSC quality control

Why is a reference gene set important?

- We want a reliable set of genes to study
- We need something to compare other genome-wide data to, eg:
 - Regulatory regions (ENCODE)
 - Variation (1000 genomes)

This talk

- GENCODE: what and why?
- Genome assemblies
- Gene annotation in GENCODE
 - Automatic annotation
 - Manual annotation
 - The merge
 - CCDS
- Where to find GENCODE data

Genome assemblies

Assembling using overlap

Repetitive sequences

Patches repair sequences

Patches and assembly updates

- A genome assembly will have errors.
- Fix patches will be added over time to repair these errors.
- The coordinate system of the genome is unaffected by the patches.
- The old sequence is retained as the primary assembly, with the patches placed on top.
- Every so often a new assembly comes out (eg GRCh38).
- All fix patches will be integrated into the assembly, fully replacing the old sequence.
- Genome coordinates change in a new assembly.

FMBI -FB

This talk

- GENCODE: what and why?
- Genome assemblies
- Gene annotation in GENCODE
 - Automatic annotation
 - Manual annotation
 - The merge
 - CCDS
- Where to find GENCODE data

The GENCODE set is made up of Ensembl and Havana annotation

Automatic annotation

Manual annotation

Genome-wide determination using the Ensembl automated pipeline

Gene determination on a caseby-case basis by a person

Both methods base their gene predictions on biological data.

Biological Evidence

GenBank

International Nucleotide Sequence databases

- Protein sequence databases
 - Swiss-Prot: manually curated
 - TrEMBL: unreviewed translations

NCBI RefSeq

• Manually annotated proteins and mRNAs (NP, NM)

Ensembl automatic annotation – step 1: masking the genome

- RepeatMasker is used to find repetitive regions in the genome.
- These are masked for further analyses.
- Almost 50% of the genome is masked out.

Ensembl automatic annotation – step 2: finding gene regions

- Uniprot proteins are aligned to the genome using Pmatch.
- This is a high-sensitivity, high-specificity approach.
- It is used to find regions of the genome where exons might be.
- The regions identified (plus a bit of padding) are taken into the next analysis.

Ensembl automatic annotation – step 3: making transcript models

- Full protein sequences are used to weave together predicted exons.
 - UTRs are added from cDNAs which overlap the protein sequence

GeneWise

Ensembl automatic annotation – step 4: score hits

- There will be multiple hits from both cDNA and protein sequences repeated in the databases.
- We use the number of hits to score splice junctions and determine if transcripts are most well-supported.

Ensembl automatic annotation – step 5: group transcripts into genes

• If transcript share exons, they are grouped into genes

Havana manual annotation

- The main benefit of manual annotation is its flexibility.
- The data we have for each gene is of varying quality and quantity, which may need special attention.
- Pseudogenes and immunoglobulin genes have many biological exceptions, which also need special attention.
- Automated annotation can only determine ~75% of genes.
- Anything out of the ordinary: e.g. single-exon gene families such as olfactory receptors
- Data is taken from databases and publications.
- Particular attention is paid to splice sites and transcription start/stop sites.

FMBI-FB

Otterlace pipeline

Havana biotypes

Protein Coding

Known_CDS Novel_CDS Putative_CDS Nonsense_Mediated_Decay

Transcript

Retained_intron Putative

Non-coding

lincRNA Antisense Sense_intronic Sense_overlapping 3'_overlapping_ncRNA

Pseudogene

Processed Unprocessed Transcribed Translated Unitary Polymorphic

Immunoglobulin

IG_pseudogene IG_Gene TR_Gene

Differences between manual and automatic annotation

	Automatic	Manual
Speed	Fast – a complete human genome can be annotated in weeks	Slow – six months for a single chromosome
Sensitivity/ selectivity	More selective – aims to have the best supported transcripts	More sensitive – aims to annotate all transcripts
Data source	Databases	Databases and publications
Non-coding sequences	Good at sncRNAs and miRNAs	Good at lincRNAs, pseudogenes, splice variants.

Ensembl/Havana merge

- Clusters of transcripts are compared, all against all
- Identical transcripts are merged
- Only intron junctions are compared, so differing UTRs are still merged
- Havana-annotated biotypes are assigned to transcripts

Ensembl/Havana merge

CCDS transcripts

Consensus CDS protein set

- Consensus <u>coding</u> DNA sequence set
- Agreement between EBI, WTSI, UCSC and NCBI
- http://www.ncbi.nlm.nih.gov/CCDS/CcdsBrowse.cgi

CCDS annotation –

step 1: NCBI and Ensembl analyse all transcripts

- NCBI and Ensembl both do the same analysis.
- They walk along the chromosome, checking if the same transcripts appear in the same places from both sources
- Only coding sequences are checked.
- This analysis is automatic

CCDS annotation –

step 2: UCSC and Havana check new transcripts

- Transcripts present in the last CCDS release are kept automatically.
- New transcripts are sent to UCSC and Havana who check them manually.
- Transcripts lost since the last release are checked too.

How GENCODE compares against other datasets?

IncRNA

IncRNA

EMBL-EBI

This talk

- GENCODE: what and why?
- Genome assemblies
- Gene annotation in GENCODE
 - Automatic annotation
 - Manual annotation
 - The merge
 - CCDS
- Where to find GENCODE data

View GENCODE data in...

You can also download GTF files from GENCODE: http://www.gencodegenes.org/releases/19.html

Havana annotation can also be browsed in Vega

Vega * BLAST/BLAT Help & Docu	rmentation		Login/Register
A repository for high-quality gene models produced by the manual annotation of vertebrate genomes.		Search: All species to for	
Browse a genome Zebrafish [21-01-2014] [Ensembl] Mouse [23-10-2013] [Ensembl]	Human [23-10-2013] [Ensembl] Pig [23-10-2013] [Ensembl]	Major histocompatibility complex (MHC) annotation Major histocompatibility complex (MHC) annotation Mice and the second	Our Data High-quality manual annotation Human annotation incorporated into GENCODE Rapid incorporation of new annotation Gene sets and regions of particular interest: Genes with mouse knockout and human LOF transcripts MHC and LRC regions
Rat [21-08-2013] [Ensembl] Browse a region Tasmanian devil [23-10-2013]	Chimpanzee [12-01-2012]	Further information on our MHC annotation. Leucocyte receptor complex (LRC) annotation Image: Complex (LRC) annotation Image: Complex (LRC) annotation	 Inde candidate regions of NOD mice Inter- and intra-species comparative genomics Cross-referenced to other databases Complements Ensembl Downloadable datasets
[Ensembi] (Ensembi] (Ensembi] (Ensembi] (Ensembi] (Ensembi]	(Ensembl) Wallaby [30-03-2009] (Ensembl)	Non-reference regions: Human: COX_1, COX_2, PGF_1, PGF_2, DM1A, DM1B, MC1A, MC1B. Further information on our LRC annotation.	 What's New in release 55 Zebrafish Annotation Updated (Zebrafish) Regular Zebrafish Updates (Zebrafish) More news

http://vega.sanger.ac.uk/index.html

EMBL-EBI

Havana annotation can also be browsed in Vega

Havana is an Ensembl style browser with further information on annotation including:

- Havana update
- Loss of function variants
- Regions not available in Ensembl e.g. MHC of Large White Pig, NOD mouse sequence.

Havana LoF variants

Havana update genes

Acknowledgements

Ensembl 2014

Paul Flicek^{1,2,*}, M. Ridwan Amode², Daniel Barrell², Kathryn Beal¹, Konstantinos Billis², Simon Brent², Denise Carvalho-Silva¹, Peter Clapham², Guy Coates², Stephen Fitzgerald¹, Laurent Gil¹, Carlos García Girón², Leo Gordon¹, Thibaut Hourlier², Sarah Hunt¹, Nathan Johnson¹, Thomas Juettemann¹, Andreas K. Kähäri², Stephen Keenan¹, Eugene Kulesha¹, Fergal J. Martin², Thomas Maurel¹, William M. McLaren¹, Daniel N. Murphy², Rishi Nag², Bert Overduin¹, Miguel Pignatelli¹, Bethan Pritchard², Emily Pritchard¹, Harpreet S. Riat², Magali Ruffier¹, Daniel Sheppard², Kieron Taylor¹, Anja Thormann¹, Stephen J. Trevanion², Alessandro Vullo¹, Steven P. Wilder¹, Mark Wilson², Amonida Zadissa¹, Bronwen L. Aken² Ewan Birney¹, Fiona Cunningham¹, Jennifer Harrow², Javier Herrero¹, Tim J.P. Hubbard², Rhoda Kinsella¹, Matthieu Muffato¹, Anne Parker², Giulietta Spudich¹, Andy Yates¹, Daniel R. Zerbino¹ and Stephen M.J. Searle²

+ Jane Loveland and Jen Harrow from Havana

