OBOL Open Bio-Ontology Language

GO Meeting Stanford Jan 2004

Outline

- Curation and annotation issues that OBOL addresses
- _ Grammatical composition and decomposition
- _ Making logical class definitions via slots
- _ Rules for logical inference
- _ DAG-Edit Plugin
- _ Results so far
- _ How it will work

How OBOL will help

- Slot-based annotations (eg interleukin-18 binding)
- _ Cross-products and composite terms
 - decomposing existing terms
 - new composite terms
- _ Consistency Checking
- New term creation
- Research (DLs, text-mining)

A Typical Fiendishly Hard Lattice

An Observation

- GO Term"sentences" often follow consistent implicit rules
 - Ogden et al
- Hidden knowledge is embedded in the text strings
- It should be possible to *decompose/parse* GO terms into **logical definitions** (and also to *compose/generate* new GO terms from new **logical definitions**)
 - We can do this with a Grammar

Formal Grammars

- A rule system for parsing (decomposing) and generating (composing) sequences of symbols (eg sentences, NA or AA sequences)
- _ Invented by Chomsky in the 50s
- Used all over computer science (e.g. Compilers)
- Also in bioinformatics eg RNA structure analysis

Grammars

- _ Terminal and non-terminal symbols
- We write non-terminals in upper case by convention
- Production Rules $X \rightarrow Y, Z$
 - Specify means of making LHS by composing RHS
 - (or decomposing RHS into LHS)
 - Recursive

A Simple English Language Grammar

- _ Sentence --> NounPhrase, VerbPhrase
- _ VerbPhrase --> Verb, NounPhrase
- _ NounPhrase --> Det, Noun
- $_{-}$ Det --> a I the
- Noun --> cat I mouse I house
- _ Verb --> scares I hates I eats I kisses
- _ Eg "the cat scares a mouse"

A grammar for OBO terms

- _ All(?) OBO terms are NOUN-PHRASES
- A NOUN-PHRASE is (recursively) made from
 - a noun
 - an adjective followed by a NOUN-PHRASE
 - a NOUN-PHRASE preceded by a NOUN-PHRASE acting as adj
 - a NOUN-PHRASE then preposition then NOUN-PHRASE
 - an (optional) NOUN-PHRASE then a relational adjective then a NOUN-PHRASE
- Precedence rules
- _ Implemented in Prolog (one page of code!)

OBO WordLists

- Partitioned by ontology
- _ Types:
 - nouns
 - adjectives
 - prepositions
 - relational adjectives (cytosol*ic*, coat*ed*)
- _ Incomplete information
 - orphan nouns

The OBO Universe (partial)

An example

_ negative regulation of smooth muscle contraction

np = adj+np

- _ negative regulation of smooth muscle contraction
- _ (negative **regulation**) (smooth **muscle**)

np = np+np

- _ negative regulation of smooth muscle contraction
- (negative regulation) ((smooth muscle)
 contraction)
- _ (negative regulation) (smooth muscle)

np = np+p+np

- _ negative regulation of smooth muscle contraction
- _ ((negative regulation) ((smooth muscle) contraction))
- (negative regulation) ((smooth muscle)
 contraction)
- _ (negative regulation) (smooth muscle)

alternate parses

- _ smooth muscle contraction
- _ (smooth (muscle **contraction**)) <-- wrong!!
 - (muscle contraction)

Making Logical Class Definitions from Parse Trees

- Tokenize OBO/GO term strings
- _ Make ParseTree using Prolog Grammar
- Transform tree to class definition using slot definitions
- _ reversible
- Classdefs can be represented in OBO format or OWL format

Making classes via slots

_ slot: regulates

- domain (subject): regulation
- range (object): biological_process
- grammar-context: preposition(of)
- _ slot: qualifier
 - domain (subject): regulation
 - range (object): negative OR positive
 - grammar-context: adjective

A Recursively Defined Class

- _ Regulation (biological_process class)
 - *type*: negative (**general** class)
 - regulates:
 - _ Contraction (**biological_process** class)

- affects_cell:

_ Muscle (cell class)

_ *type*: smooth (general class)

COPII-coated vesicle membrane

- _ membrane (**cellular_component** class)
 - part_of
 - _ vesicle (cellular_component class)
 - has_part
 - _ coat (cellular_component class)
 - _ made_from
 - _ COPII (complex class)

Reasoning over class definitions

Use inference over classdefs to

- place new terms in the correct place in the DAG
- check for missing relationships in the DAG
- find inconsistencies within the DAG
- other kinds of reasoning?
- Method:
 - Inference rules implemented in Prolog

Inferring intermediate terms and ISAs

regulation(process_regulated:R,qual:Q) isa regulation(process_regulated:R',qual:Q) <=> R isa R'

IFF the stem-class is the same AND all the slot-values in the restriction-list are identical EXCEPT for one slot, where the slot-values are linked by an isa, then the classdefs are linked by an isa

Inference in Prolog is easy

% DATABASE OF FACTS

- isa(carb_binding, binding).
- isa(polysac_binding, carb_binding).
- isa(chitin_binding, polysac_binding)
- _ isa(cellulose_binding, polysac_binding).

% INFERENCE RULES

- isaT(X,Y):- isa(X, Y).
- isaT(X,Y):-isa(X,Z), isaT(Z,Y).

- ?- isaT(chitin_binding, binding).
- YES
- _ ?-isaT(X, polysac_binding).
- X=carb_binding.
- X=chitin_binding.
- X=cellulose_binding.
- ?-isaT(chitin_binding, cellulose_binding).
 - NO
 - ?-isaT(X, Y). % returns all paths

Detecting inconsistencies

OBOL: Combining Grammars and Reasoning

- Allows complex logical definitions to be maintained as linear text strings
- Maintains facade of narrative approach, whilst implementing a combinatorial approach behind the scenes
- _ Description Logic Reasoners can be used
 - Racer, FACT OR use OBOL prolog rules
- _ Speeds up term creation?
- _ Flexibility for annotators

Results so far

- Main corpus of logical rules implemented
- _ wordlists and slot definitions incomplete
- _ Unique classdefs:
 - function: 2133
 - process: 3240
 - component: 430
- _ Missing relationships (UNVALIDATED): 130
- _ Existing relationships that can be infered: ?

Problems to address

- _ Multiple parses
- _ Difficulties with nascent biochemical ontology
- _ No cross-species anatomy ontology (as yet)
- _ No protein/complex ontology
- Can we use OBOL to help build these other ontologies?

Gradual Introduction of OBOL

- now: periodic generation of editlists
- _ soon: DAG-Edit plugin
- hopefully soon: anatomy and biochem onts
- on request: autogeneration of crossproducts
- **?: maintenance of classdefs in OBO files**
- ?: regular releases in OWL format
- ?: slot-based annotation

What next?

- Grammar for Text-Definitions
- _ Extend inference rules
 - e.g. Non-monotonic reasoning (cell HAS-PART nucleus EXCEPT erythroctye)
- _ Getting it to work as a DAG-Edit plugin
- Wait for, or help create good chemical, protein and "meta-anatomy" ontologies

Conclusions

- Decomposing GO terms is useful, and achievable
- Reasoning over the resulting logical definitions is possible, and can help maintenance
- Combination of grammar & reasoning is powerful – rigor + ease of use
- _ A new way of thinking about GO/OBO?
- Useful in all realms of complex biological data modeling

Acknowledgements

_ Suzi

- Chris Wroe
- _ John _ Robert Stevens
- Brad
- _ David & Joel
- _ Michael
- _ GO Curators