Linking ontologies to one another and to the Cell Ontology with the COBrA ontology editor

Jonathan Bard & Stuart Aitken

Biomedical Science & Informatics
University of Edinburgh, UK

Context

- Our interest is in linking anatomy ontologies to use information from one species to help understand another (the XSPAN project)
- Links are to be based on homology, analogy and cell-type relationships
- When database curators met to produce an ontological framework for mutant phenotypes, it was clear that they needed an Ontology of Cell Types
- Michael Ashburner, David States and I then drafted an Ontology of Cell Types
- Cell types are a good way to link organisms (e.g. all have striated muscles, nerves, etc!) for XSPAN
- Archiving such links is however very complicated Excel is not enough!
- Stuart Aitkin (ontologist/logician) + Roman Korf produced the COBrA tool

What I will do

- Summarise the specification for the Cell Ontology
- Use DAG-edit to show the Cell Ontology (a version)
- Making the β version
- Summarise the initial specification for COBrA
- Add the wish-list specification for COBrA
- Illustrate how COBrA works
- Highlight some technical problems in formats for ontologies that need clearing up

Acknowledgements

The Cell Ontology

- Michael Ashburner (curator)
- David States
- Jonathan Bard

Others, particularly from the plant

domain are feeding in cell data

- and we want lots more!

COBrA

- Stuart Aitken
- Roman Korf
- (Jonathan Bard)

Cell Ontology Specification

- Cover all living species bacteria, fungi, plants, vertebrates, invertebrates
- Facilitate interoperability across species databases by providing a cell type ID that was (as far as possible) species independent
 - o This meant trying to set phylum/species-specific cell types as deep nodes
- Include all cell types
- Archive these cell types in all the obvious ways that a user might search on
 - O Morphology
 - o Function
 - O Lineage etc +
 - Organism
- As any cell type would thus have multiple parents, we required a DAG with rules
 - o Is-a (subClass of)
 - O Gives rise to

The current α version of the cell Ontology

- Meets the planned criteria
- Includes >650 items with CL IDs
- Has terms and synonyms from the eVOC cell ontology
- Is written in DAG-edit format Posted on OBO
- Can be downloaded from the OBO site

 $a \rightarrow \beta =$ feedback, additions, criticisms

The cell ontology in DAG-edit

The mapping problem for XSPAN

- The intention is to establish links between "equivalent" tissues in Drosophila,
 C elegans, zebrafish and mouse (= human) on the basis of
 - Homology (evolution or lineage)
 - o Analogy (= function)
 - o Cell type (common IDs)
 - O Any other reason (common genetic networks?)
- One way to store links is to keep all this data in a spread sheet
 - impractical as it has to be computer readable for genetic access
- ♦ A better way is to store links between pairs of organisms in an ontology
 - O This needs a purpose-built editing/mapping tool

Specifying the COBrA tool

- Assume appropriate developmental anatomies (another story) in ontology form
- We need a tool that will
 - Read 2 anatomy (or any other) ontologies

 $\sqrt{}$

Incorporate the Cell Ontology

 $\sqrt{}$

o Make links across the ontologies

Define new relationships

 $\sqrt{}$

Store the links in machine-readable form (e.g. an ontology)

We would also like the tool to be able to

o F	Read & write all ontology formats (OWL, RDFS, GO, XML, DAG-edit)	V
-----	--	---

- Support ontology editing (create, drag-drop, merge etc)
- Allow searching
- o Show the type of relationship connecting nodes and leaves $\sqrt{}$
- Permit external validation of ontologies
- o Display DAG relationships \sqrt{ish}

COBrA in action

COBrA is downloadable from

http://www.xspan.org/applications/cobra/index.html

and accessible from the GO tools page

Some oddities that emerged while making COBrA

COBrA software

- reads all standard ontology formats (XML, OWL, RDFS, GO, DAG-edit)
- o translates these ontologies internally into a format that is a superset of all
- Writes new ontologies in any standard format that is specified

- COBrA software was designed to meet all external standards (XML, OWL, RDFS)
- Stuart Aitken found 3 inconsistencies/problems in translating formats
- To ensure future interoperability, these problems need solving

The 4 problems

1. There are ID format inconsistencies

- ◆ It turns out that GO & DAG-edit use the ID for the localname of an ontology term, but these always include: e.g. cell (e.g. GO:0005623)
- XML and RDFS standards forbid: in allowable names (Qnames)
- Existing software libraries such as Jena require XML Qnames for concepts. OWLbased tools for GO will need to use these existing resources

The solution is to replace: with . as in GO.0005623

2. Access to OBO ontologies is not automatic

Validation using existing ontology tools requires files to be at the stated location so that they can be downloaded. The OBO site provides a link rather than the ontology

The solution is to provide full namespaces at OBO

3. Logical relationships within GO

- The meaning of the is_a relation is not precisely defined
 - O SA proposes the use of rdfs:subClassOf for is_a.
- The meaning of the part_of relations is ill-defined and not always transitive (T)
 - consider anatomical relationships
 - 1. The coronoid notch is part of the ulna bone (a bit of) $T \rightarrow$
 - 2. The bone marrow is part of the humerus (contained within) non-T
 - 3. The collar bone is part of the skeleton (member of the group) $T \leftarrow$
 - 4. Neural crest is part of head mesenchyme (component of mixture)

 →
- SA suggests that we should revise the GO class restrictions to model part_of
 - O SA proposes as an interim solution using an OWL-Full ontology for part_of

4. GO/DAG-edit format limitation

- Semantic web tools (for reasoning etc) do not necessarily read GO and DAGedit formats
- OBO ontologies will need to be translated into an OWL format so that they can be handled by such tools (the COBrA tool can help here)
- Discussion about standardisations will be required and a concensus agreed

Conclusions

- The cell ontology is available for use from the OBO site
 - please send criticisms, suggestions etc to Michael Ashburner
- ♦ The COBrA tool is now available from the GO tools site for
 - o Editing ontologies
 - Linking ontologies
 - Ontology format translations
- Comments on the format problems raised by Stuart Aitken

should be addressed to stuart@aiai.ed.ac.uk