AmiGO Development

Shengqiang Shu, Chris Mungall and Suzanna Lewis

Lawrence Berkeley National Laboratory

Berkeley, CA 94720

Abstract--To improve AmiGO usability, numerous enhancements have been implemented in the past year including better layout of search result for readability and web paging for search speed. Further enhancements are needed. Currently all web page settings are stored on web server per user session. To improve user experience in using AmiGO, some of settings should be stored per user instead of per user session. Auto-filling input fields will make AmiGO more interactive. Since GO database will have more data and displaying IEA evidenced associations have been requested, AmiGO needs to be able to handle ever increase in database size. AmiGO performance on data with IEA is minimally affected when web paging technique is employed. Ontology becomes more complex and AmiGO ontology tree view is too unwieldy. Relationship filtering or inferring is one way to reduce the complexity so display of ontology in tree view is more manageable.

A. Introduction

We have a few minor releases of AmiGO in the past year. Major improvements include a better layout of gene product search page and gene product detail page for better readability. Visual cue is provided to separate different gene products and to delineate different associations of a gene product with alternate background colors (Fig. 1). Text highlighting gives users feedback on why certain items are returned when only the synonym matches the search string. On the term search result page, obsolete terms are grayed out and replacement term is hyperlinked (Fig. 2). AmiGO with web paging returns results back to users much quicker and database server overload problem was solved. AmiGO query engine first gathers bare-minimum information on a user’s search, divide the result list into sub pages and only to get all details on the items in one sub page at a time (Fig. 3). Soon to be alive, AmiGO will display a term neighbors on the gene product detail page so users can get a better context on the term (Fig. 4). On the same page, the term ancestors can also be viewed (Fig. 5). In both options, a term node can be expanded or collapsed.

B. Future Development

B.1 Persistent user setting

Currently, ontology navigation history and all filter settings are stored on the web server side on a per session basis. Many users may want to have persistent user settings so they don’t have to set filter settings each time they visit AmiGO. AmiGO has a complicated session tracking system. Ontology navigation history clearly has to be stored on the server side on a per session basis. On the other hand, user’s settings have to be separately stored, mostly likely on the user end using browser cookie. The tricky part of implementing this will be carefully teasing out all filter settings from the session track system.

B.2 Database size implication on query performance

Some gene products have only IEA associations and currently AmiGO running on GOLite database which is lacking IEA associations. As result, some gene products are not searchable in AmiGO. In the future, GO database will increase in size as future discovery will result in more association data and more importantly GO community will grow resulting in even more data. To test how AmiGO handles a bigger database size, AmiGO query performance metrics were collected from a full GO database instance (with IEA associations) and a GOLite database instance of same release.

As seen in Fig. 6A, the GO database with IEA associations has more than 3 times as many gene products as the GOLite database. The number of associations has more than quadrupled in the database with IEA data (Fig. 6B).

With web paging technique, increase in data size has a minimal impact on query performance and its impact is almost non-existent on a sub page fetching performance (Fig. 7). When searching for gene products, initial query on the bigger database is slower on the surface (Fig. 7), however, the initial query from the bigger database returns many more results. When considering query time per returning items, the query speed on the bigger database is faster (Fig. 8). When search for GO term, there is not much difference between 2 databases as they have the same number of terms (Fig. 9).

B.3 Web paging implication with filtering

As described in the section above, initial query in the web paging is to get bare-minimum information for speed. This presents some problem in term of accuracy in reporting the number of returning results and subsequent individual page fetching when a filter like evidence code is applied. For example, AmiGO by default filters out IEA data and uses a simple look-ahead algorithm when a page contains filtered-out gene products. There is a case where AmiGO has to do a few hundred pages of look-ahead in gene product query results with ‘act’ string query fetched from the full GO database, resulting in very slow performance. A better algorithm is needed to do look-ahead and look-back when it encounters a non-full page.

B.4 Taxonomy hierarchy

GO database currently has data of many species and will has more species in the future. Constraining a query with a taxon higher than species will be imperative in effectively searching GO data with AmiGO. GO database needs to have taxonomy hierarchy loaded but only used in a query constraint (hierarchy not displayed).

B.5 Gene product count display

As shown in Fig. 10, the number of gene products is not precisely computed and a ‘<’ character in front of numeric number is used to denote such fact when certain filters are applied. This way of displaying undetermined count seems confused lots of users. For query speed reason, the gene product count for a term is pre-computed per data-source and for non-IEA. To display exact number of gene products for a term in any combination of data-source, evidence code and species may not be possible using pre-computed count.

B.6 Term auto-completion

Term completion will help users pinpoint exact search string so query could be sped up because of smaller number of items involved. Fig. 11 shows a prototype of a term auto-completion. The code is based on AJAX widgets (http://script.aculo.us/). To make this very usable, the term server sending terms to the auto-completion widget must be very fast. One way to accomplish this is to cache all terms in memory on the term server.

B.7 Relationship inferring/filtering

Ontology becomes more complex. More terms are introduced and many terms have multiple parents. A term’s path to an ancestor can be shortened when the term can be inferred as if it is a direct child of that ancestor. For example, when E part_of D, D is_a C, C is_a B and B part_of A, this graph can be reduced to E part_of D, D part_of B and B part_of A. When inference is computed, the number of paths to root can be reduced. Figure 12 shows reduced tree of the term ‘Srb-mediator complex’ when part_of is inferred over is_a. This is in drastic contrast when all relationships are shown.

