Clinical Genomics Data Infrastructure and ClinVar

U. Geigenmüller¹, D. Maglott², S. Aradhya³, S. Bale³, P.R. Billings⁴, C. Braastad⁵, M. Eisenberg⁶, M.J. Ferber⁷, K. Fuentes Fajardo⁸, M. Hegde⁹, B. Kattman², S.F. Kingsmore¹⁰, I.S. Kohane¹¹, D.H. Ledbetter¹², K. Lee¹¹, E. Lyon¹³, C. Lese Martin⁹, N.A. Miller¹⁰, J. Ostell², J. Paschall², H.L. Rehm¹⁴, G.R. Riley², C.J. Saunders¹⁰, S.T. Sherry², E.D. Trautman⁶, V. Zvereff⁶, D.M. Margulies¹⁵ 1) Channing Laboratory, Brigham and Women's Hospital, Boston, MA; 2) National Center for Biotechnology Information, NLM, OIH, Bethesda, MD; 3) GeneDx, Gaithersburg, MD; 4) LIFE Technologies, Carlsbad, CA; 5) Athena Diagnostics, Worcester, MA; 6) LabCorp/CMBP, Raleigh, NC; 7) Mayo Clinic, Rochester, MN; 8) NIH/NHGRI/OCD/Undiagnosed Diseases Program, Bethesda, MD; 9) Department of Human Genetics, Emory University School of Medicine, Atlanta, GA; 10) Children's Mercy Hospital, Kansas City, MO; 11) Center for Biomedical Informatics, Harvard Medical School, Boston, MA; 12) Geisinger Health System, Danville, PA; 13) University of Utah Pathology Department/ARUP Laboratories, Salt Lake City, UT; 14) Harvard Medical School, Boston, MA; 15) Correlagen Diagnostics, Waltham, MA.

Problem Statement

Adoption of large-scale sequencing in molecular diagnostics is limited by difficulty of assessing the clinical significance of detected variants.

Limited accessibility of variant observation data

- Primary data are fragmented across publications, locus-specific databases, and proprietary databases and thus hard to find or completely inaccessible.
- Lack of standardization of data structures hinders meta analysis of available data.

Inconsistent variant interpretations

- Varying sets of public data and local primary data used to derive clinical significance of the same variant
- Varying assessment methods used to derive clinical significance from primary data

Project Goal

To develop a centralized, freely accessible, clinical-grade database that ...

Increases data accessibility and consistency of use

Access to all relevant data from both public and private sources

Promotes consistent data use

- Defined data structure enables meta-analysis
- Database checks on accuracy and internal consistency of variant description

Enables scalable variant analysis

- All data on a given variant aggregated in one place
- Data mining by manual community effort and automated text mining

Variant interpretation not scalable

Data searches and interpretations largely manual and prohibitively labor intensive

Community experience and expertise not shared

No mechanism for sharing interpretive decisions widely across laboratories

ClinVar Database

- ClinVar: created and maintained by NCBI (<u>http://www.ncbi.nlm.nih.gov/clinvar</u> see Poster Clinical genetics resources at NCBI: ClinVar and ISCA support evidencebased interpretation of human variation)
- Controlled vocabulary used for description of variants and associated phenotypes (Table 1).

Given an identifier, ClinVar will calculate other identifiers as applicable and check submission for internal consistency

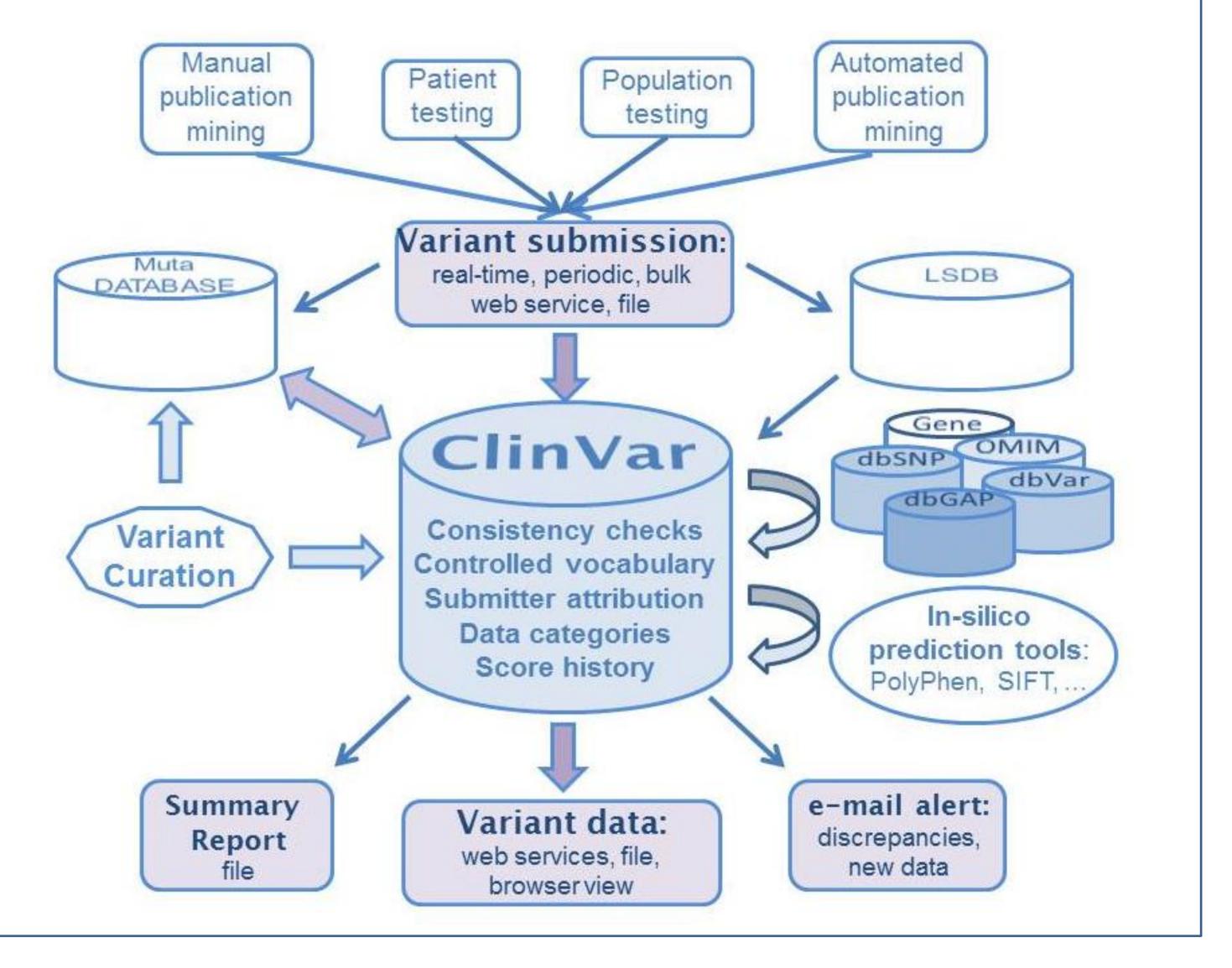
Table 1: Variant and phenotype descriptors (by submission)

Variant description	Chromosomal co-ordinates: NCBI identifiers preferred, CCDS, UCSC, or ENSEMBL acceptable
	Coding co-ordinates: HGVS identifiers ¹
	Variant type: Sequence Ontology identifiers ²
Associated	SNOMED CT preferred, UMLS, MeSH, HPO, OMIM, ICD-9, ICD-10, free text acceptable

Data stored and retrievable in computable format

Provides confidence measure for clinical interpretation

- Multiple clinical interpretations stored for each variant, with each interpretation tagged by submitter and algorithm used
 - \rightarrow Divergent interpretations indicate uncertainty
- Clinical interpretations classified by curation level


Promotes currency of clinical interpretation

- Alert issued if new data or new interpretations for a variant become available
 - **Revised interpretation can be issued** \rightarrow

Enables development and calibration of interpretive algorithms

Variant Data Flow

Integration of ClinVar with other databases and tools

pnenotypes

Experimental system

• Aim is to capture as much data as possible and allow users to make independent judgments on the quality of assertions (Table 2)

Table 2: Data quality (by data source)		
	Detection platform	
Variant detection method	PHRED score for the variant call and/or metric of technology-specific false positive rate	
Phenotype assertion method	Symptoms preferred, test indication acceptable	
Type of experimental system	Type of model (animal, cell based, in-vitro)	

Observational data will be categorized to allow meta-analysis and use in automated rules-based scoring algorithms (Table 3).

Table 3: Observational data (by data source)

Unrelated unaffected individuals	# individuals tested
	Ethnicity of individuals tested
AND	Age group of individuals tested
Unrelated affected individuals	# variant occurrences
	# affected with variant
	# related affected without variant
Affected femilies	# variant occurrences in affected
Affected families	# de-novo variant occurrences in affected
	# observed transmissions of variant allele from het parent

Status

- 36 labs that have agreed to contribute sequence-level data
- 20,000 variants loaded
- Position papers about policies for participation, sustainability model, ClinVar data elements, standards, and technical methods available on

observed transmissions of variant allele from het parent

related unaffected with variant (zygosity consistent with mode of inheritance), by age group

Effect size

Clinical assertions will be categorized as uncurated or curated by registered submitter, by expert-panel, or by practice guideline

Table 4: Clinical assertion (by submission)				
	Variant classification category			
Clinical assertion	Method of variant classification			
	Curation level			

http://www.ncbi.nlm.nih.gov/clinvar/community/

Mailing List Address: <u>clinvar@ncbi.nlm.nih.gov</u>

References

- 1. Human Genome Variation Society: Nomenclature for the description of sequence variants http://www.hgvs.org/mutnomen/
- 2. The Sequence Ontology Project. <u>http://www.sequenceontology.org/</u>